Dernière mise à jour : 09/11/2024
L'industrialisation du code du projet de Data Science n'est qu'une étape parmi d'autres pour réaliser la mise en production du système et le faire évoluer. En effet, une fois ce premier pas franchi, il s'agira alors de mettre en place un mécanisme d'orchestration, mais aussi d'être capable de déployer régulièrement, et de suivre le comportement du système sur la durée.
Aujourd'hui encore, trop de modèles de Machine Learning ne sont pas déployés en production et demeurent dans les data labs. Une solution à ce problème consiste à réunir les équipes de data science et d'informatique autour du concept de MLOps.
Tout au long de cette formation, vous profiterez de la riche expérience de nos consultants-formateurs pour mettre en œuvre les pratiques de la Data Science en production.
Vous vous approprierez les outils et le processus transversal, collaboratif et itératif MLOps pour réduire le délai de votre mise sur le marché tout en améliorant continuellement la valeur ajoutée pour vos utilisateurs. Le MLOps prend notamment en charge l'intégration continue, ainsi que le déploiement rapide et reproductible des modèles.
Cette formation est dispensée par un·e ou plusieurs consultant·es d'OCTO Technology ou de son réseau de partenaires, expert·es reconnus des sujets traités.
Le processus de sélection de nos formateurs et formatrices est exigeant et repose sur une évaluation rigoureuse leurs capacités techniques, de leur expérience professionnelle et de leurs compétences pédagogiques.
L'évaluation des acquis se fait tout au long de la session au travers des ateliers et des mises en pratique.
Afin de valider les compétences acquises lors de la formation, un formulaire d'auto-positionnement est envoyé en amont et en aval de celle-ci.
En l'absence de réponse d'un ou plusieurs participants, un temps sera consacré en ouverture de session pour prendre connaissance du positionnement de chaque stagiaire sur les objectifs pédagogiques évalués.
Une évaluation à chaud est également effectuée en fin de session pour mesurer la satisfaction des stagiaires et un certificat de réalisation leur est adressé individuellement.
Jour 1
CLARIFICATION DE L'APPROCHE MLOPS
INTRODUCTION À LA CI / CD
PYRAMIDE DE TESTS
MISE EN PRATIQUE : “METTRE EN PLACE UN OUTIL D'INTÉGRATION CONTINUE”
CLOUD & INFRASTRUCTURE AS CODE
ORCHESTRATION
Jour 2
ARTEFACTS
DÉPLOIEMENT
EXPOSITION
Jour 3
MISE EN PRATIQUE : “PASSER D'UN MODÈLE ONE-SHOT À UN MODÈLE QUI PRÉDIT TOUTES LES MINUTES”
FEEDBACK LOOPS
MONITORING
AMÉLIORATION CONTINUE
BILAN ET CLÔTURE